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In this paper the properties of a cylindrically symmetric five component electron gun

are calculated computationally. The gun consists of a filament, a cathode, an anode,

a Wehnelt cylinder/grid, and a focus. The electrostatic potential of the gun is cal-

culated using a laplacian relaxation method and a simple compactification scheme.

Electron trajectories are then calculated with relativistic effects taken into account,

using the Euler method of integration. Finally, the simulation is compared to exper-

imental results.
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I. INTRODUCTION

The electron gun model presented here operates in a vacuum environment. Electrons are

released from a hot filament which doubles as the cathode. Surrounding the cathode is the

grid or Wehnelt cylinder, which serves to focus the emitted electrons. The electrons then

accelerate towards the positively charged (relative to the cathode) anode. Finally, the beam

is passed through two more plates which serve to focus the electron beam further. This is

illustrated in figure 4.

II. THEORY

A. Model Details

1. Statement of the problem

The interaction between the grid, anode, and cathode, is not trivial due to the nature

of conductors. One well known method for finding the electric fields around conductors is

to solve a boundary value problem. From Gauss’s law, one knows that in an area of zero

charge density, ∇ · ~Ei = 0. Since ~E = −∇φ, this becomes Laplace’s equation:

∇2φ = 0 (1)

If we specify boundary conditions for this differential equation, namely making sure

the potential is zero at infinity and is set to the required voltages on the boundaries of the

conducting elements, we end up with a clear task: Given the boundary values, solve equation

equation 1 over all of space.

Because of the cylindrical symmetry, we work exclusively in cylindrical coordinates. We

denote such a coordinate by (r, z, θ), with r ∈ (0,∞), z ∈ (−∞,∞), and θ ∈ (0, 2π). These

are mapped to euclidean coordinates by the equation (x, y, z) = (r cos(θ), r sin(θ), z). In

these coordinates, equation 1 becomes:

0 = ∇2φ =
1

r2
∂2φ

∂θ2
+

1

r

∂φ

∂r
+
∂2φ

∂r2
+
∂2φ

∂z2
(2)

We can take advantage of cylindrical symmetry and recognize that φ is independent of

θ, so that 2 becomes:
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0 =
1

r

∂φ

∂r
+
∂2φ

∂r2
+
∂2φ

∂z2
(3)

2. Space discretization and compactification

To numerically solve the problem, we first translate the problem to a compact space1. A

compactification is chosen using two scalar parameters a and b, matched to r and z by the

equations:

z =
b

1− b2
(4)

r =
a

1− a2
(5)

Using equations 3, 4, and 5, we only have to consider the points (a, b) where a ∈ [0, 1]

and b ∈ [−1, 1]. The space of (a, b) is then discretized into an N by M evenly spaced grid.

We will denote coordinates of this grid aij and bij, where 0 ≤ i ≤ N and 0 ≤ j ≤ M .

Their corresponding r and z components will be denoted by rij and zij, and the value of

the potential at these coordinates will be denoted φij. Note that at a = ±1 and b = ±1

equations 4 and 5 become singular. In these cases, standard extended real notation is used

to assign values as follows: If i = 0, then aij = 0 and rij = 0. If i = N , then aij = 1 and

r =∞. If j = 0, then bij = −1 and z = −∞. Finally, if j = M , then bij = 1 and z =∞.

3. Derivative approximations

If a function f(x) has a domain discretized into coordinates xn, is denoted fn = f(xn),

and if we denote ∆xn = xn − xn−1, then one can immediately deduce three approximations

for the first derivative of f .

f ′n ≈
fn+1 − fn

∆xn+1

≈ fn − fn−1
∆xn

≈ fn+1 − fn−1
∆xn + ∆xn−1

(6)

Applying the first part of 6 to f and the second part to the approximation of f ′, one

finds an approximation for the second derivative.

f ′′n ≈
fn+1 − fn

∆xn+1∆xn
− fn − fn−1

∆x2n
(7)
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4. Relaxation method

To solve 3 we use the derivative approximations of the previous section to approximate

the differential equation as a difference equation. This equation can then be solved as

φij = F (φ(i+1)j, φ(i−1)j, φi(j+1), φi(j−1)). We end up with N · M linear equations. Instead

of considering the simultaneous equations, we use the successive over relaxation method as

described in A First Course in Computational Physics2 (p. 262). Briefly, the method works

as follows. Initial values for each φij are chosen. At each step of the relaxation process, φ′ij is

calculated by solving the difference equation that is a result of equation 3, and is then used

as the new value for φij. Phrased differently, at each step we calculate φ′ij as described before

and then assign φij := φ′ij. This is the standard relaxation method. The over relaxation

method used here assigns φij := φ′ij + α(φ′ij + φij), where α is a parameter between 0 and

1, in this paper’s simulation it was chosen to be α = .9. This succeeds in accelerating

convergence. Results from this method are presented in the model results section.

5. Calculating ~E from the potential

Using the values from the previous section for φij, one wants to find the ~E = −∇φ. This

is relatively straightforward by the multivariable chain rule:

~E = −∇φ

= (− ∂

∂x
φ(a(x), b(y)),− ∂

∂y
φ(a(x), b(y)))

= (−∂a
∂x

∂

∂a
φ(a, b),−∂b

∂y

∂

∂b
φ(a, b))

(8)

6. Calculating electron trajectories

Electrons in the model have zero initial velocity and have an initial position at the

cathode. The Lorentz force law states that an electron in the absence of a magnetic field

has a changing momentum according to:

d~p

dt
= q ~E (9)
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(q is considered here to have a negative value for the electron). Relativistic momentum

is given by:

~p = γm~v (10)

where γ is the lorentz factor. From this equation, we can create a vector quantity with

units of velocity as ~s = ~p
m

. Solving 10 for ~v gives:

~v = ~s(1 +
(s
c

)2

)−
1
2 (11)

(~s · ~s has been denoted by s2 for notational convenience). Using these equations, we can

set up an Euler integration scheme:

~x(t+ dt) = ~x(t) + ~v(~s)dt (12)

~s(t+ dt) = ~s(t) +
q

m
~E(~x)dt (13)

where ~v(~s) is the function given in equation 11. In SI units q
m

is on the order of 1011 C
kg

,

which is within the range of double floating point precision, so that no changes need to be

made when implementing equations 12 and 13 on a computer while using SI units.

B. Model parameters

Mass to charge ratio of the electron: q
m

= −1.759 · 1011 C
kg

.

Successive overrelaxation parameter: α = 0.9.

C. Model Results

Plots of the model results are shown after the appendix.

D. Comparison with experimental phenomena

One well known property of electron guns is the phenomenon of cutoff. This was suc-

cessfully recreated in the simulation. It occurs when the grid voltage is low enough that

electrons no longer see a force vector towards the anode, and instead see a force vector
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away from the grid. This was recreated and pictured in figure 3. Due to the computational

complexity of the relaxation, it is difficult to get an accurate value of the cutoff voltage in

this model.

E. Conclusion

The model presented suffers from being computationally expensive, and there may be

numerical artifacts from the compactification scheme. It would be best to compare the

results obtained with this method to results obtained with other compactification schemes.

The model may benefit a lot from using a finite element method approach, as even the over

relaxation method takes hundreds of iterations to converge to an accurate result, with a grid

size of 100 by 200.
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FIG. 1. 3D plot of the calculated potential

FIG. 2. Plot of calculated electron trajectories
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FIG. 3. Plot of calculated electron trajectories in the case of cutoff

FIG. 4. A schematic of the electron gun3
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