Math 255 Honors: Gram-Schmidt Orthogonalization on the Space of Polynomials

David Moore

May 21, 2013

Abstract

Gram-Schmidt Orthogonalization is a process to construct orthogonal vectors from some basis for a vector space. In this paper we will discuss the Gram-Schmidt process on the set of all polynomials with degree N, use the Gram-Schmidt process to generate the Legendre Polynomials, using Mathematica code, in their normalized and unnormalized forms.

1 Space Axioms

1.1 Vector Space Axioms

Any polynomial must be in the form $\sum_{n=0}^{N} c_{n} x^{n}$, for constants c_{0}, \ldots, c_{n}, where it is assumed that the polynomial is a function of some real paramater x. It is clear that the following axioms are satisfied, due to the properties and definitions of addition and multiplication in \mathbb{R}. For any polynomials $p(x), q(x), r(x)$, and scalars $c, d \in \mathbb{R}$.

1. Addition Axioms
(a) $p+q=q+p$.
(b) $(p+q)+r=p+(q+r)$.
(c) $0+p=p+0=p$.
(d) $(-p)+p=0$.
2. Scalar Multiplication Axioms
(a) $0 \cdot p=0$
(b) $1 \cdot p=p$
(c) $(c d) p=c(d p)$
3. Distributive Axioms
(a) $c(p+q)=c p+c q$
(b) $(c+d) p=c p+d p$

Since the axioms are satisfied, the space of such polynomials is a vector space.

1.2 Inner Product Space Axioms

We can define the inner product between two polynomials, $\langle p, q\rangle$ in terms of a real integral:

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

The following axioms are satisfied, again with polynomials p, q, r, and real values c, d.

1. $\langle p, q\rangle=\langle q, p\rangle$, since $p(x) q(x)=q(x) p(x)$ within the integral.
2. $\langle c p, q\rangle=\int_{-1}^{1} c p(x) q(x) d x=c\langle p, q\rangle$.
3. $\langle p+r, q\rangle=\int_{-1}^{1}(p(x) q(x)+r(x) q(x)) d x=\langle p, q\rangle+\langle r, q\rangle$.
4. $\langle p, p\rangle=\int_{-1}^{1} p(x)^{2} d x>0$.

So, the given definition satisfies all the properties of an inner product. We will also make use of the definition:

$$
\|A\|^{2}=\langle A, A\rangle
$$

Now that we've established the inner product and vector space, we can define Gram-Schmidt Orthogonalization.

2 Gram-Schmidt Process

2.1 Definition

The Gram-Schmidt process is defined as follows. Assume that S_{n} is a basis with N elements for the set of polynomials of degree less than or equal to N. The Gram-Schmidt process creates one list of orthogonal vectors, w_{n}.

1. let $w_{0}=S_{0}, e_{0}=w_{0} / \sqrt{\left\langle w_{0}, w_{0}\right\rangle}$.
2. Then, define $w_{1}=S_{1}-w_{0} \frac{\left\langle S_{1}, w_{0}\right\rangle}{\left\langle w_{0}, w_{0}\right\rangle}$.
3. And in general, let $w_{n}=S_{n}-\sum_{i=0}^{n-1} w_{n} \frac{\left\langle S_{n}, w_{i}\right\rangle}{\left\langle w_{i}, w_{i}\right\rangle}$.

2.2 Properties

Theorem 1. A nonzero vector A is orthogonal to a finite set of orthogonal vectors S if and only if it can be obtained from the Gram-Schmidt Process, from some vector C. (ie, $A=C-\left\langle C, S_{1}\right\rangle /\left\|S_{1}\right\|^{2} S_{1}-\ldots-\left\langle C, S_{n}\right\rangle /\left\|S_{n}\right\|^{2} S_{n}$, for some C in the vector space).

Proof. $\leftarrow)$ If A is obtained from the Gram-Schmidt process from some vector C, and is nonzero, then for any vector $S_{n} \in S$, where S has N elements,

$$
\begin{align*}
\left\langle A, S_{n}\right\rangle & =\left\langle C-\sum_{i=1}^{N} S_{i}\left\langle C, S_{i}\right\rangle /\left\|S_{i}\right\|^{2}, S_{n}\right\rangle \tag{1}\\
& =\left\langle C, S_{n}\right\rangle-\sum_{i=1}^{N}\left\langle S_{i}\left\langle C, S_{i}\right\rangle /\left\|S_{i}\right\|^{2}, S_{n}\right\rangle \tag{2}\\
& =\left\langle C, S_{n}\right\rangle-\sum_{i=1}^{N}\left\langle C, S_{i}\right\rangle /\left\|S_{i}\right\|^{2}\left\langle S_{i}, S_{n}\right\rangle \tag{3}\\
& =\left\langle C, S_{n}\right\rangle-\left\langle C, S_{n}\right\rangle /\left\|S_{n}\right\|^{2}\left\langle S_{n}, S_{n}\right\rangle \tag{4}\\
& =\left\langle C, S_{n}\right\rangle-\left\langle C, S_{n}\right\rangle /\left\|S_{n}\right\|^{2}\left\|S_{n}\right\|^{2} \tag{5}\\
& =\left\langle C, S_{n}\right\rangle-\left\langle C, S_{n}\right\rangle \tag{6}\\
& =0 \tag{7}
\end{align*}
$$

Where (3) follows from the definition of a set of orthogonal vectors; $\left\langle S_{i}, S_{j}\right\rangle=$ 0 whenever $i \neq j$.

Since $\left\langle A, S_{n}\right\rangle=0$, and since n was arbitrary, this means A is orthogonal to every vector in S.
$\rightarrow)$ If A is nonzero vector orthogonal to every S_{i}, then letting $C=A$, applying the Gram-Schmidt process to C yields:

$$
\begin{align*}
& C-\sum_{i=1}^{N} S_{i}\left\langle S_{i}, C\right\rangle /\left\|S_{i}\right\|^{2} \tag{8}\\
= & C-\sum_{i=1}^{N} S_{i} \cdot 0 /\left\|S_{i}\right\|^{2} \tag{9}\\
= & C \tag{10}\\
= & A \tag{11}
\end{align*}
$$

So, since a vector produced from one step of the Gram-Schmidt orthogonalization process will be orthogonal to all vectors previous to it, using the process with $\left\{S_{n}\right\}$ as an input gives you the orthogonal basis $\left\{w_{n}\right\}$ as an output. The above theorem also implies that if you let S be a completely arbitrary basis for the space, then applying the Gram-Schmidt process gives you the general form of all possible orthogonal basis vectors.

3 Legendre Polynomials

The most straightforward basis for the space of polynomials degree less than or equal to N is $S=\left\{1, x, x^{2}, \ldots, x^{N}\right\}$, but, for example, $\left\langle 1, x^{2}\right\rangle=\int_{-1}^{1} x^{2} d x=$ $\left((1)^{3}-(-1)^{3}\right) / 2=2 / 3$, so S is not an orthogonal basis.

However, if we apply the Gram-Schmidt orthogonalization process to the set, letting $N=2$ for example, we wind up with:

1. $w_{0}=1$.
2. $w_{1}=x-1\langle 1, x\rangle /\langle 1,1\rangle=x-0=x$.
3. $w_{2}=x^{2}-1\left\langle 1, x^{2}\right\rangle /\langle 1,1\rangle-\left\langle x, x^{2}\right\rangle /\langle x, x\rangle$. Since the rightmost term is the integral from -1 to 1 of an odd function, it's zero. The middle term evaluates to $1 / 3$, and so $w_{2}=x^{2}-1 / 3=1 / 3\left(3 x^{2}-1\right)$.

Continuing to higher N , we end up with multiples of a family called the Legendre polynomials.

4 Legendre Polynomials Uniqueness

A simple orthogonal basis could be in the form $S=\left\{c_{(0,0)}, c_{(0,1)}+c_{(1,1)} x, \ldots, \sum_{i=0}^{N} c_{(i, N)} x^{i}\right\}$, for some real constants $\left\{c_{(i, j)}\right\}$ If we orthogonalize this basis, then as above, up to $N=1$:

1. $w_{0}=c_{(0,0)}$.
2. $w_{1}=c_{(0,1)}+c_{(1,1)} x-c_{(0,0)}\left\langle c_{(0,0)}, c_{(0,1)}+c_{(1,1)} x\right\rangle /\left(2 c_{(0,0)}^{2}\right)$
$=c_{(0,1)}+c_{(1,1)} x-1 /\left(2 c_{(0,0)}\right) \int_{-1}^{1}\left(c_{(0,0)} c_{(0,1)}+c_{(0,0)} c_{(1,1)} x\right) d x$
$=c_{(0,1)}+c_{(1,1)} x-c_{(0,1)}$
$=c_{(1,1)} x$
The integrals can take long to evaluate, but we find that each w_{i} is just some multiple of the Legendre polynomials found in the last section, and that the constants $c_{(0,1)}, c_{(0,2)}, c_{(1,2)}$ etc. disappear from the final result. The following is a mathematica-generated table continuing the process up to $N=4$.

4.1 Table 1

Table of Legendre Polynomials, generated by the code in appendix B:

N	Gram-Shmidt Generated	Standard	Normalized
0	$c_{(0,0)}$	1	$\frac{1}{\sqrt{2}}$
1	$x c_{(1,1)}$	x	$\sqrt{\frac{3}{2}} x$
2	$\frac{1}{3}\left(3 x^{2}-1\right) c_{(2,2)}$	$\frac{1}{2}\left(3 x^{2}-1\right)$	$\frac{1}{2} \sqrt{\frac{5}{2}}\left(3 x^{2}-1\right)$
3	$\frac{1}{5} x\left(5 x^{2}-3\right) c_{(3,3)}$	$\frac{1}{2} x\left(5 x^{2}-3\right)$	$\frac{1}{2} \sqrt{\frac{7}{2}} x\left(5 x^{2}-3\right)$
4	$\frac{1}{35}\left(35 x^{4}-30 x^{2}+3\right) c_{(4,4)}$	$\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$	$\frac{3}{8 \sqrt{2}}\left(35 x^{4}-30 x^{2}+3\right)$

This shows that the Legendre polynomials are unique in that any orthogonal basis consisting of polynomials of increasing degree, starting at a 0th degree polynomial, will just be multiples of the Legendre polynomials. To uniquely determine each polynomial, we can add an extra N equations. The standard Legendre Polynomials are constructed as in the table above, with the added condition that

$$
\left\langle P_{n}, P_{n}\right\rangle=\frac{2}{2 n+1}
$$

The normalized Legendre Polynomials are constructed by specifying that

$$
\left\langle P_{n}, P_{n}\right\rangle=1
$$

4.2 Figure 1

Plot of the first 13 normalized Legendre Polynomials

5 Appendix

A Orthogonalization Code

```
(* Create a polynomial from a list of coefficients *)
polynomial[clist_, x_] := Sum[clist[[n]] x^(n-1), {n, 1, Length[clist]}];
(* Inner product function - Integrates the function from x=-1 to x=1 *)
pInner[p1_, p2_] := Integrate[Function[x, p1 p2][x], {x, -1, 1}];
(* Gram-Schmidt Orthogonalization Code *)
orthogonalizeP[plist_] := Module[{p},
    p[1] := plist[[1]];
    p[n_] := p[n] = plist[[n]] - Sum[p[i] pInner[p[i], plist[[n]]]/
            pInner[p[i], p[i]], {i, 1, n-1}];
    Table[p[n], {n, 1, Length[plist]}]
    ];
orthonormalizeP[plist_] := Module[{orthog},
    #/Sqrt[pInner[#, #]] &/@orthogonalizeP[plist] (* Normalizing *)
    ];
```


B Legendre Polynomial Generation

```
(* Generate the polynomials in column 1 of table 1 *)
legendrePolynomialList = Simplify[orthogonalizeP[Table[polyGen[n, n, x], {n, 0, 4}]]];
```

```
(* Solve for the coefficients by specifying that < Sn, Sm = 2/(2n+1). So that
```

(* Solve for the coefficients by specifying that < Sn, Sm = 2/(2n+1). So that
Mathematica will simplify factors of the form a/Sqrt[a^2], add the assumptions
Mathematica will simplify factors of the form a/Sqrt[a^2], add the assumptions
that each c[i,i] is >0. *)
that each c[i,i] is >0. *)
standardForm =
standardForm =
Simplify[
Simplify[
legendrePolynomialList/.
legendrePolynomialList/.
Solve [
Solve [
Table[
Table[
pInner[legendrePolynomialList[[i + 1]], legendrePolynomialList[[i + 1]]]
pInner[legendrePolynomialList[[i + 1]], legendrePolynomialList[[i + 1]]]
=2/(2 i + 1), {i, 0, 4} (* < S S , S S > = 2/(2n+1) *)
=2/(2 i + 1), {i, 0, 4} (* < S S , S S > = 2/(2n+1) *)
],
],
Table[c[i, i], {i, 0, 4}]
Table[c[i, i], {i, 0, 4}]
][[-1]] (* There are multiple solutions with different signs. [[-1]] takes the last
][[-1]] (* There are multiple solutions with different signs. [[-1]] takes the last
solution found by Solve[]. *),
solution found by Solve[]. *),
Assumptions }->\mathrm{ Table[c[i, i] > 0, {i, 0, 4}]
];

```
```

(* Solve for the coefficients by specifying that }\langle\mp@subsup{S}{n}{},\mp@subsup{S}{n}{}\rangle=1. So tha

```
(* Solve for the coefficients by specifying that }\langle\mp@subsup{S}{n}{},\mp@subsup{S}{n}{}\rangle=1. So tha
    Mathematica will simplify factors of the form a/Sqrt[a^2], add the assumptions
    Mathematica will simplify factors of the form a/Sqrt[a^2], add the assumptions
    that each c[i,i] is >0. *)
    that each c[i,i] is >0. *)
normalizedForm = Simplify[
normalizedForm = Simplify[
        legendrePolynomialList/.
        legendrePolynomialList/.
            Solve[
            Solve[
                Table[
                Table[
                    pInner[legendrePolynomialList[[i + 1]], legendrePolynomialList[[i + 1]]]
                    pInner[legendrePolynomialList[[i + 1]], legendrePolynomialList[[i + 1]]]
                    =1, {i, 0, 4} (* <S S , Sn> = 1 *)
                    =1, {i, 0, 4} (* <S S , Sn> = 1 *)
                ],
                ],
                Table[c[i, i], {i, 0, 4}]
                Table[c[i, i], {i, 0, 4}]
            ][[-1]] (* There are multiple solutions with different signs. [[-1]] takes the last
            ][[-1]] (* There are multiple solutions with different signs. [[-1]] takes the last
        solution found by Solve[]. *),
        solution found by Solve[]. *),
        Assumptions }->\mathrm{ Table[c[i, i] > 0, {i, 0, 4}]
    ];
(* Display the solutions. *)
Column[{legendrePolynomialList, standardForm, normalizedForm}]
{c[0,0], xc[1, 1], \frac{1}{3}(-1+3 ( x ) c[2, 2], 直 x (-3+5 x
{1,x,\frac{1}{2}(-1+3\mp@subsup{x}{}{2}),\frac{1}{2}x(-3+5\mp@subsup{x}{}{2}),\frac{1}{8}(3-30\mp@subsup{x}{}{2}+35\mp@subsup{x}{}{4})}
{\frac{1}{\sqrt{}{2}},\sqrt{}{\frac{3}{2}}x,\frac{1}{2}\sqrt{}{\frac{5}{2}}(-1+3\mp@subsup{x}{}{2}),\frac{1}{2}\sqrt{}{\frac{7}{2}}x(-3+5\mp@subsup{x}{}{2}),\frac{3(3-30\mp@subsup{x}{}{2}+35\mp@subsup{x}{}{4})}{8\sqrt{}{2}}}
```


C Plot Generation

(* Plot the first 13 normalized Legendre polynomials. *)
Plot [Table [LegendreP[$n, x] / \operatorname{Sqrt}[2 /(2 n+1)],\{n, 0,12\}],\{x,-1,1\}]$

