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Abstract

Gram-Schmidt Orthogonalization is a process to construct orthogonal
vectors from some basis for a vector space. In this paper we will discuss
the Gram-Schmidt process on the set of all polynomials with degree N , use
the Gram-Schmidt process to generate the Legendre Polynomials, using
Mathematica code, in their normalized and unnormalized forms.

1 Space Axioms
1.1 Vector Space Axioms
Any polynomial must be in the form

∑N
n=0 cnxn, for constants c0, . . . , cn, where

it is assumed that the polynomial is a function of some real paramater x. It is
clear that the following axioms are satisfied, due to the properties and definitions
of addition and multiplication in R. For any polynomials p(x), q(x), r(x), and
scalars c, d ∈ R.

1. Addition Axioms

(a) p + q = q + p.
(b) (p + q) + r = p + (q + r).
(c) 0 + p = p + 0 = p.
(d) (−p) + p = 0.

2. Scalar Multiplication Axioms

(a) 0 · p = 0
(b) 1 · p = p

(c) (cd)p = c(dp)

3. Distributive Axioms

(a) c(p + q) = cp + cq

(b) (c + d)p = cp + dp

Since the axioms are satisfied, the space of such polynomials is a vector
space.
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1.2 Inner Product Space Axioms
We can define the inner product between two polynomials, 〈p, q〉 in terms of a
real integral:

〈p, q〉 =
∫ 1

−1
p(x)q(x)dx

The following axioms are satisfied, again with polynomials p, q, r, and real
values c, d.

1. 〈p, q〉 = 〈q, p〉, since p(x)q(x) = q(x)p(x) within the integral.

2. 〈cp, q〉 =
∫ 1
−1 cp(x)q(x)dx = c 〈p, q〉.

3. 〈p + r, q〉 =
∫ 1
−1(p(x)q(x) + r(x)q(x))dx = 〈p, q〉+ 〈r, q〉.

4. 〈p, p〉 =
∫ 1
−1 p(x)2dx > 0.

So, the given definition satisfies all the properties of an inner product. We
will also make use of the definition:

‖A‖2 = 〈A, A〉

Now that we’ve established the inner product and vector space, we can define
Gram-Schmidt Orthogonalization.

2 Gram-Schmidt Process
2.1 Definition
The Gram-Schmidt process is defined as follows. Assume that Sn is a basis with
N elements for the set of polynomials of degree less than or equal to N . The
Gram-Schmidt process creates one list of orthogonal vectors, wn.

1. let w0 = S0, e0 = w0/
√
〈w0, w0〉.

2. Then, define w1 = S1 − w0
〈S1,w0〉
〈w0,w0〉 .

3. And in general, let wn = Sn −
∑n−1

i=0 wn
〈Sn,wi〉
〈wi,wi〉 .

2.2 Properties
Theorem 1. A nonzero vector A is orthogonal to a finite set of orthogonal
vectors S if and only if it can be obtained from the Gram-Schmidt Process, from
some vector C. (ie, A = C − 〈C, S1〉 / ‖S1‖2

S1 − . . . − 〈C, Sn〉 / ‖Sn‖2
Sn, for

some C in the vector space).
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Proof. ← ) If A is obtained from the Gram-Schmidt process from some vector
C, and is nonzero, then for any vector Sn ∈ S, where S has N elements,

〈A, Sn〉 =
〈

C −
N∑

i=1
Si 〈C, Si〉 / ‖Si‖2

, Sn

〉
(1)

= 〈C, Sn〉 −
N∑

i=1

〈
Si 〈C, Si〉 / ‖Si‖2

, Sn

〉
(2)

= 〈C, Sn〉 −
N∑

i=1
〈C, Si〉 / ‖Si‖2 〈Si, Sn〉 (3)

= 〈C, Sn〉 − 〈C, Sn〉 / ‖Sn‖2 〈Sn, Sn〉 (4)
= 〈C, Sn〉 − 〈C, Sn〉 / ‖Sn‖2 ‖Sn‖2 (5)
= 〈C, Sn〉 − 〈C, Sn〉 (6)
= 0 (7)

Where (3) follows from the definition of a set of orthogonal vectors; 〈Si, Sj〉 =
0 whenever i 6= j.

Since 〈A, Sn〉 = 0, and since n was arbitrary, this means A is orthogonal to
every vector in S.
→ ) If A is nonzero vector orthogonal to every Si, then letting C = A,

applying the Gram-Schmidt process to C yields:

C −
N∑

i=1
Si 〈Si, C〉 / ‖Si‖2 (8)

= C −
N∑

i=1
Si · 0/ ‖Si‖2 (9)

= C (10)
= A (11)

So, since a vector produced from one step of the Gram-Schmidt orthogonal-
ization process will be orthogonal to all vectors previous to it, using the process
with {Sn} as an input gives you the orthogonal basis {wn} as an output. The
above theorem also implies that if you let S be a completely arbitrary basis for
the space, then applying the Gram-Schmidt process gives you the general form
of all possible orthogonal basis vectors.

3 Legendre Polynomials
The most straightforward basis for the space of polynomials degree less than or
equal to N is S = {1, x, x2, . . . , xN}, but, for example,

〈
1, x2〉 =

∫ 1
−1 x2dx =

((1)3 − (−1)3)/2 = 2/3, so S is not an orthogonal basis.
However, if we apply the Gram-Schmidt orthogonalization process to the

set, letting N = 2 for example, we wind up with:
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1. w0 = 1.

2. w1 = x− 1 〈1, x〉 / 〈1, 1〉 = x− 0 = x.

3. w2 = x2 − 1
〈
1, x2〉 / 〈1, 1〉 −

〈
x, x2〉 / 〈x, x〉. Since the rightmost term is

the integral from −1 to 1 of an odd function, it’s zero. The middle term
evaluates to 1/3, and so w2 = x2 − 1/3 = 1/3(3x2 − 1).

Continuing to higher N, we end up with multiples of a family called the
Legendre polynomials.

4 Legendre Polynomials Uniqueness
A simple orthogonal basis could be in the form S = {c(0,0), c(0,1)+c(1,1)x, . . . ,

∑N
i=0 c(i,N)x

i},
for some real constants {c(i,j)} If we orthogonalize this basis, then as above, up
to N = 1:

1. w0 = c(0,0).

2. w1 = c(0,1) + c(1,1)x− c(0,0)
〈
c(0,0), c(0,1) + c(1,1)x

〉
/(2c2

(0,0))
= c(0,1) + c(1,1)x− 1/(2c(0,0))

∫ 1
−1(c(0,0)c(0,1) + c(0,0)c(1,1)x)dx

= c(0,1) + c(1,1)x− c(0,1)
= c(1,1)x

The integrals can take long to evaluate, but we find that each wi is just some
multiple of the Legendre polynomials found in the last section, and that the
constants c(0,1), c(0,2), c(1,2) etc. disappear from the final result. The following
is a mathematica-generated table continuing the process up to N = 4.

4.1 Table 1
Table of Legendre Polynomials, generated by the code in appendix B:

N Gram-Shmidt Generated Standard Normalized

0 c(0,0) 1 1√
2

1 xc(1,1) x
√

3
2 x

2 1
3
(
3x2 − 1

)
c(2,2)

1
2
(
3x2 − 1

) 1
2

√
5
2
(
3x2 − 1

)
3 1

5 x
(
5x2 − 3

)
c(3,3)

1
2 x
(
5x2 − 3

) 1
2

√
7
2 x
(
5x2 − 3

)
4 1

35
(
35x4 − 30x2 + 3

)
c(4,4)

1
8
(
35x4 − 30x2 + 3

) 3
8
√

2

(
35x4 − 30x2 + 3

)
This shows that the Legendre polynomials are unique in that any orthogonal

basis consisting of polynomials of increasing degree, starting at a 0th degree
polynomial, will just be multiples of the Legendre polynomials. To uniquely
determine each polynomial, we can add an extra N equations. The standard
Legendre Polynomials are constructed as in the table above, with the added
condition that

〈Pn, Pn〉 = 2
2n + 1
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The normalized Legendre Polynomials are constructed by specifying that

〈Pn, Pn〉 = 1

.

4.2 Figure 1
Plot of the first 13 normalized Legendre Polynomials

5 Appendix

A Orthogonalization Code
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B Legendre Polynomial Generation
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C Plot Generation
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