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Abstract

This paper has two significant results. First, it details how modes of
the simple wave equation (the equation that dictates rope movement under
high tension and small displacement) on a finite spatial domain can be
solved for, when the density function of the rope is arbitrary. Secondly,
it details how one can use this sequence of modes to approximate an
arbitrary wave pulse on the rope. Once the wave pulse is approximated
as a sum of modes, one can plug in any time value and get a result without
having to simulate every second beforehand.

1 Foreword

This article is based off of part of chapter 5 of DeVries’ A First Course in
Computational Physics (2ed). While it’s meant to be self-contained it forms
more of a documentation of work than a readable/nice paper. See the book by
DeVries or the visualizations on my website to get a more complete idea of this
project. My website also contains a .pdf and a Mathematica .nb file giving all
Mathematica code used to solve this problem.

Explicitly: Code, visualizations, and larger motivation/descriptions are omit-
ted in this paper.

2 Introduction

We solve the 1-dimensional wave equation with fixed boundaries by applying
the finite element method as described in DeVries 5.26. The full time dependent
one dimensional partial differential equation can be described as follows, where
φ(x, t) is the height of the wave and is a function of position and time, µ(x) is
the density of the wave medium at position x, and T is the tension on the wave
medium:

∂2ψ

∂x2
=
µ

T

∂2ψ

∂t2
(1)

We can solve for the normal modes of this system by assuming the height
function ψ is of the form ψ = ay(x) cos(ωt + b) for nonunique constants a, b,
and ω. Inserting this into equation 1:
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0 =
∂2ψ

∂x2
− µ

T

∂2ψ

∂t2

= ay′′(x) cos(ωt+ b)− µ

T
(−ay(x)ω2 cos(ωt+ b))

The final form reached is a time independent differential equation for y(x):

0 = y′′ +
µ

T
yω2 (2)

Depending on the function µ(x), this differential equation may not have a
simple solution.

3 Finite Elements Equations

We will assume nothing about µ(x) (except that it is reasonably well behaved
and non-pathological). The solution to 2 can then only be calculated numeri-
cally.

To approximate y, assume that the domain in question ranges from x = 0
to x = L. To implement fixed boundary conditions, it will be assumed that
y(0) = y(L) = 0. This domain is divided into N + 1 evenly spaced points
indexed from 0 to N , with x0 = 0 and xN = L. Then the separation between
consecutive xi is the step size and will be denoted:

h = xi+1 − xi =
L

N
(3)

Note that this definition sets xi = hi.
The function y will be linearly approximated by N + 1 constants ai, with

the property that y(xi) = ai, and linear interpolation is used between points.
This can be described in a convenient manner by the use of basis functions. If
one writes:

φi(x) =


0, if x ≤ xi−1
x−xi−1

xi−xi−1
, if xi−1 ≤ x ≤ xi

xi+1−xi−1

xi−xi−1
, if xi ≤ x ≤ xi+1

0, if xi+1 ≤ x

(4)

then p can be written as

p(x) =

N∑
i=0

aiφi(x) (5)

Equation 2 contains a second derivative, so it is immediately applicable to
consider φ′i and φ′′i . We will address the discontinuities by applying the standard
methods of the Heaviside step function and the Dirac delta function. We find
that φi can be written in the cumbersome form, which is equivalent to 4:

φi(x) =
1

h
((x−xi−1)H(x−xi−1)−2(x−xi)H(x−xi) + (x−xi+1)H(x−xi+1))

(6)
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In this equation, H(a) is the Heaviside step function and is 0 when a < 0
and 1 when a > 1. Using standard methods, the derivative of this function is
defined in terms of distributions, and after simplifications it comes out to be

φ′i(x) =
1

h
(H(x− xi−1)− 2H(x− xi) + 1H(x− xi+1)) (7)

Applying the same process a second time:

φ′′i (X) =
1

h
(δ(x− xi−1)− 2δ(x− xi) + δ(x− xi+1)) (8)

where δ is the Dirac delta distribution.
The residual error, the amount by which p does not satisfy the differential

equation, is given by R(x) = d2p
dx2 + µ(x)ω2

T p. Applying the Galerkin method

yields the condition that
∫ L

0
R(x)φi(x)dx = 0, for all i.

0 =

∫ L

0

(
d2p

dx2
φi(x) + µ(x)

ω2

T
pφi(x))dx

=

∫ L

0

(
N∑

n=0

an
h

(δ(x− xn−1)− 2δ(x− xn) + δ(x− xn+1))φi(x)

)
dx

+

∫ L

0

(

N∑
n=0

µ(x)
ω2

T
anφi(x)φn(x))dx

(9)

This integral is explicitly integrable if we approximate µ(x) as constant
through the interval (xi, xi+1), and denote it µi. Doing this reveals that equa-
tion 9 is equivalent to:

0 =

N∑
n=0

(
an
h

∫ L

0

(δ(x− xn−1)− 2δ(x− xn) + δ(x− xn+1))φi(x)dx

+ µi
ω2

T
an

∫ L

0

φi(x)φn(x)dx

) (10)

Due to the localized nature of the basis functions, both terms in the sum
only become nonzero when n = i− 1, n = i or n = i+ 1. So, the integrals can
be evaluated explicitly, and

ω2 (ai−1 + 4ai + ai+1) =
6T

µih2
(ai−1 − 2ai + ai+1) (11)

4 Approximating a function as a sum of modes

If we are given the initial conditions of the rope at time 0 as ψ(x, 0) = f(x)
and ∂

∂tψ(x, 0) = ḟ(x), we can approximate the rope’s evolution over time by
representing the equation as a finite sum of M different normal modes. We will
denote the ith normal mode with frequency ωi as gi(x), where gi is a solution
to equation 2.
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Suppose that Γ(x, t) is a function which is the sum of a finite number of
normal modes at time t. To best approximate ψ we will need an appropriate
number of degrees of freedom. One selection of degrees of freedom is to have
2M constants, denoted ai and bi, where ai is a magnitude and bi is a phase.
Writing out our equation for Γ and its time derivative and evaluating at time
t = 0:

Γ(x, t) =

M∑
i=1

ai cos(ωit− bi)gi(x) (12)

∂

∂t
Γ(x, t) =

M∑
i=1

gi(x)aiωi(− sin(ωit− bi)) (13)

Γ(x, 0) =

M∑
i=1

gi(x)ai cos(bi) (14)

∂

∂t
Γ(x, 0) =

M∑
i=1

gi(x)ωiai sin(bi) (15)

Now we suppose that ai are chosen such that Γ is the best possible least-
squares approximation to f(x) (it will be found that this condition imposes no
restrictions on bi). We then assume that bi are chosen such that ∂

∂tΓ is the best

possible least-squares approximation to ḟ(x) (likewise this condition imposes no
restrictions on ai).

Minimization of the least-squares error is carried out for each ai. Since we
care about the initial conditions, we assume t = 0 so that both Γ and f are
dependent on x but not t.

0 =
∂

∂ai

∫ L

0

(Γ− f)2dx

=
∂

∂ai

∫ L

0

(Γ2 + f2 − 2fΓ)dx

=

∫ L

0

(2Γ
∂

∂ai
Γ− 2f

∂

∂ai
Γ)dx

= 2

∫ L

0

(Γ− f)
∂Γ

∂ai
dx

(16)

Γ is expressed in equation 14, and clearly ∂Γ
∂ai

= gi(x) cos(bi). Since cos(bi)
is a constant term and not a function of x, we can throw it away (assuming the
input function f is well behaved enough that cos(bi) can be chosen not equal to
zero) along with the factor of two. Doing that and moving the integral of f to
the other side of the equation turns equation 16 into

M∑
n=1

an cos(bn)

∫ L

0

gn(x)gi(x)dx =

∫
f(x)gi(x)dx (17)
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Now we handle bi similarly:

0 =
∂

∂bi

∫ L

0

(Γ̇− ḟ)2dx

=
∂

∂bi

∫ L

0

(Γ̇2 + ḟ2 − 2ḟ Γ̇)dx

=

∫ L

0

(2Γ̇
∂

∂bi
Γ̇− 2ḟ

∂

∂bi
Γ̇)dx

= 2

∫ L

0

(
Γ̇− ḟ

) ∂Γ̇

∂bi
dx

(18)

Γ̇ is expressed in equation 15, with ∂Γ̇
∂bi

= gi(x)aiωi cos(bi). Similar to last
time, we assume ai 6= 0 and ωi 6= 0 without justification. Reasonably but
perhaps surprisingly, since cos(bi) is a multiplying factor for the whole equation
it is irrelevant to the answer (with the assumption cos(bi) 6= 0). So, both sides
can be divided through by 2aiωi cos(bi). Finally, expanding Γ̇ in terms of its
sum and moving the ḟ term to the other side turns equation 18 into:

M∑
n=1

anωn sin(bn)

∫ L

0

gn(x)gi(x)dx =

∫
ḟ(x)gi(x)dx (19)

In order to solve equations 17 and 19 we use linear algebra notation. It is
not simplified to a sparse matrix and is left as a dense M by M linear equation.
We define a matrix Gij , and column vectors Fi, Ḟi, Ci, and Si.

Gij =

∫ L

0

gi(x)gj(x)dx (20)

Fi =

∫ L

0

f(x)gi(x)dx (21)

Ḟi =

∫ L

0

ḟ(x)gi(x)dx (22)

Ci = ai cos(bi) (23)

Si = ωiai sin(bi) (24)

Then equations 17 and 19 - which both hold for all valid indices i - can be
reexpressed in two matrix equations:

GC = F (25)

GS = Ḟ (26)

Once C and S have been solved for, it is trivial to find ai and bi. Explicitly:

ai =

√
C2

i + (Siω
−1
i )2 (27)

bi = atanfull(Siω
−1
i , Ci) (28)

5


